The following info and data is provided "as is" to help patients around the globe.
We do not endorse or review these studies in any way.
Brief Title: Development of a Computer-aided Polypectomy Decision Support
Official Title: Development of a Computer-aided Polypectomy Decision Support
Study ID: NCT04811937
Brief Summary: Quality components of colonoscopy include the detection and complete removal of colorectal polyps, which are precursors to CRC. However, endoscopic ablation may be incomplete, posing a risk for the development of "interval cancers". The investigators propose to develop a solution based on artificial intelligence (AI) (CADp computer-aided decision support polypectomy) to solve this problem.This research project aims to develop CADp, a computer decision support solution (CDS) for the ablation of colorectal polyps from 1 to 20 mm.
Detailed Description: This research project aims to develop CADp, a computer-based decision support (CDS) solution for the removal of colorectal polyps ranging from 1-20 mm. The investigators will use a video and image dataset of polypectomy procedures to train the CADp model; thus, it can provide real-time overlaid video feedback for polypectomy procedures based on five specific metrics: 1) estimation of polyp size; 2) prediction of morphology and histology; 3) suggestion of an appropriate resection accessory and technical approach based on the characteristics, size, and histology of the polyp according to current guidelines; 4) image overlay, based on semantic image segmentation technology, showing the extent of the lesion and suggestion of an appropriate resection margin contour around the polyp to ensure its complete removal; 5) post-resection analysis to identify any remnant polyp tissue or insufficient resection margin that may increase this risk. The investigators will collect a set of images and video data from live polypectomy procedures to leverage recent advances in AI technology to train deep learning models. This dataset will be obtained prospectively from a cohort of adults (ages 45-80) undergoing screening, diagnostic, or surveillance colonoscopies. To train the CADp solution, the investigators will obtain the corresponding completeness of resection status using the yield of post-resection margin biopsies. The dataset will be divided into two groups, the training, and the CADp test, respectively.
Minimum Age: 45 Years
Eligible Ages: ADULT, OLDER_ADULT
Sex: ALL
Healthy Volunteers: No
Centre Hospitalier Universitaire de Montréal, Montréal, Quebec, Canada
Name: Daniel von Renteln
Affiliation: Centre hospitalier de l'Université de Montréal (CHUM)
Role: PRINCIPAL_INVESTIGATOR