⭐️⭐️⭐️⭐️⭐️ "A total no brainer"

⭐️⭐️⭐️⭐️⭐️ "Love this, so easy."

Spots is the easy way to track your skin, mole and cancer changes.

Spots Global Cancer Trial Database for Development of a Computer-aided Polypectomy Decision Support

The following info and data is provided "as is" to help patients around the globe.
We do not endorse or review these studies in any way.

Trial Identification

Brief Title: Development of a Computer-aided Polypectomy Decision Support

Official Title: Development of a Computer-aided Polypectomy Decision Support

Study ID: NCT04811937

Study Description

Brief Summary: Quality components of colonoscopy include the detection and complete removal of colorectal polyps, which are precursors to CRC. However, endoscopic ablation may be incomplete, posing a risk for the development of "interval cancers". The investigators propose to develop a solution based on artificial intelligence (AI) (CADp computer-aided decision support polypectomy) to solve this problem.This research project aims to develop CADp, a computer decision support solution (CDS) for the ablation of colorectal polyps from 1 to 20 mm.

Detailed Description: This research project aims to develop CADp, a computer-based decision support (CDS) solution for the removal of colorectal polyps ranging from 1-20 mm. The investigators will use a video and image dataset of polypectomy procedures to train the CADp model; thus, it can provide real-time overlaid video feedback for polypectomy procedures based on five specific metrics: 1) estimation of polyp size; 2) prediction of morphology and histology; 3) suggestion of an appropriate resection accessory and technical approach based on the characteristics, size, and histology of the polyp according to current guidelines; 4) image overlay, based on semantic image segmentation technology, showing the extent of the lesion and suggestion of an appropriate resection margin contour around the polyp to ensure its complete removal; 5) post-resection analysis to identify any remnant polyp tissue or insufficient resection margin that may increase this risk. The investigators will collect a set of images and video data from live polypectomy procedures to leverage recent advances in AI technology to train deep learning models. This dataset will be obtained prospectively from a cohort of adults (ages 45-80) undergoing screening, diagnostic, or surveillance colonoscopies. To train the CADp solution, the investigators will obtain the corresponding completeness of resection status using the yield of post-resection margin biopsies. The dataset will be divided into two groups, the training, and the CADp test, respectively.

Eligibility

Minimum Age: 45 Years

Eligible Ages: ADULT, OLDER_ADULT

Sex: ALL

Healthy Volunteers: No

Locations

Centre Hospitalier Universitaire de Montréal, Montréal, Quebec, Canada

Contact Details

Name: Daniel von Renteln

Affiliation: Centre hospitalier de l'Université de Montréal (CHUM)

Role: PRINCIPAL_INVESTIGATOR

Useful links and downloads for this trial

Clinicaltrials.gov

Google Search Results

Logo

Take Control of Your Skin and Body Changes Today.

Try out Spots for free, set up only takes 2 mins.

spots app storespots app store

Join others from around the world: