⭐️⭐️⭐️⭐️⭐️ "A total no brainer"

⭐️⭐️⭐️⭐️⭐️ "Love this, so easy."

Spots is the easy way to track your skin, mole and cancer changes.

Spots Global Cancer Trial Database for Renal Cancer Detection Using Convolutional Neural Networks

The following info and data is provided "as is" to help patients around the globe.
We do not endorse or review these studies in any way.

Trial Identification

Brief Title: Renal Cancer Detection Using Convolutional Neural Networks

Official Title: Renal Cancer Detection Using Convolutional Neural Networks

Study ID: NCT03857373

Conditions

Kidney Cancer

Interventions

Study Description

Brief Summary: We aim to experiment and implement various deep learning architectures in order to achieve human-level accuracy in Computer-aided diagnosis (CAD) systems. In particular, we are interested in detecting renal tumors from CT urography scans in this project. We would like to classify renal tumor to cancer, non cancer, renal cyst I, renal cyst II, renal cyst III and renal cyst VI, with high sensitivity and low false positive rate using various types of convolutional neural networks (CNN). This task can be considered as the first step in building CAD systems for renal cancer diagnosis. Moreover, by automating this task, we can significantly reduce the time for the radiologists to create large-scale labeled datasets of CT-urography scans.

Detailed Description: We aim to experiment and implement various deep learning architectures in order to achieve human-level accuracy in Computer-aided diagnosis (CAD) systems. In particular, we are interested in detecting renal tumors from CT urography scans in this project. We would like to classify renal tumor to cancer, non cancer, renal cyst I, renal cyst II, renal cyst III and renal cyst VI, with high sensitivity and low false positive rate using various types of convolutional neural networks (CNN). This task can be considered as the first step in building CAD systems for renal cancer diagnosis. Moreover, by automating this task, we can significantly reduce the time for the radiologists to create large-scale labeled datasets of CT-urography scans.

Eligibility

Minimum Age:

Eligible Ages: CHILD, ADULT, OLDER_ADULT

Sex: ALL

Healthy Volunteers: No

Locations

Zealand University Hospital, Roskilde, , Denmark

Contact Details

Useful links and downloads for this trial

Clinicaltrials.gov

Google Search Results

Logo

Take Control of Your Skin and Body Changes Today.

Try out Spots for free, set up only takes 2 mins.

spots app storespots app store

Join others from around the world: