⭐️⭐️⭐️⭐️⭐️ "A total no brainer"

⭐️⭐️⭐️⭐️⭐️ "Love this, so easy."

Spots is the easy way to track your skin, mole and cancer changes.

Spots Global Cancer Trial Database for Dendritic Cells (DC) Vaccine for Metastatic Melanoma

The following info and data is provided "as is" to help patients around the globe.
We do not endorse or review these studies in any way.

Trial Identification

Brief Title: Dendritic Cells (DC) Vaccine for Metastatic Melanoma

Official Title: Randomized Phase II Evaluation of Immunization Against Tumor Cells in Subjects With Metastatic Melanoma Using Autologous Mature Dendritic Cells

Study ID: NCT01042366

Interventions

Vaccination

Study Description

Brief Summary: The purpose of this study is to determine what effect using an experimental tumor vaccine (a substance or group of substances meant to cause the immune system to respond to a tumor) made using patients' own tumor cells and blood cells will have on their melanoma.

Detailed Description: Historically, metastatic melanoma has been associated with a poor prognosis. Recently, numerous immunotherapeutic agents, particularly checkpoint inhibitors, have moved to the forefront of therapy. Checkpoint inhibitors such as ipilimumab, pembrolizumab, and nivolumab have revolutionized the treatment of melanoma. Despite this, not all patients respond to checkpoint inhibitors, and even patients who initially respond to checkpoint inhibitor therapy often later relapse (median response duration of 2 years); complete responses remain uncommon. Thus, more effective immunotherapies are clearly needed. The concept of administering dendritic cell (DC)-based vaccines to prompt an immune response against tumor cells has shown promise in the treatment of advanced cancers. Sipuleucel-T, now FDA-approved for the treatment of advanced prostate cancer, is one such vaccine that consists of autologous antigen-presenting cell (APC) activated ex vivo by a fusion protein consisting of the antigen prostatic acid phosphatase (PAP) and granulocyte-macrophage colony stimulating factor (GM-CSF). Although response rates to Sipuleucel-T are low, recent studies suggest that DC vaccines have the potential to improve survival by increasing the breadth and diversity of melanoma-specific T cells. It is known that the method of antigen (Ag) delivery is important for the success of DC vaccines, but it remains unclear which method is most effective in producing antitumor responses. Approaches tested clinically include pulsing with HLA-restricted defined peptide Ags, loading with purified proteins, transfecting with mRNA, engineering with Ag-encoding viral vectors, and using autologous tumor cells or allogeneic cell lines directly as sources of Ag. Efficacy can be measured in vivo using surrogate endpoints, such as development of tumor-specific delayed-type hypersensitivity (DTH) reactions. Prolonged survival of vaccinated melanoma patients has been reported to correlate with induction of positive DTH tests. Antitumor activity may also be assessed by ELISpot analysis of the frequency of tumor-Ag specific IFNγ-producing T cells. To assess the quality of the DC vaccines, surrogate markers of DC function including maturation markers, co-stimulatory molecule expression, and IL12p70 production, a critical cytokine in antitumor response, can be measured

Keywords

Eligibility

Minimum Age: 18 Years

Eligible Ages: ADULT, OLDER_ADULT

Sex: ALL

Healthy Volunteers: No

Locations

Upmc Upci Hcc, Pittsburgh, Pennsylvania, United States

Contact Details

Name: John M Kirkwood, MD

Affiliation: UPMC UPCI HCC

Role: PRINCIPAL_INVESTIGATOR

Useful links and downloads for this trial

Clinicaltrials.gov

Google Search Results

Logo

Take Control of Your Skin and Body Changes Today.

Try out Spots for free, set up only takes 2 mins.

spots app storespots app store

Join others from around the world: