The following info and data is provided "as is" to help patients around the globe.
We do not endorse or review these studies in any way.
Brief Title: Plasmatic L-AScorbic Acid in MYelodyplastic Syndroms and Controls
Official Title: Kinetics of the Plasmatic Concentration of L-Ascorbic Acid in Patient With Myelodysplastic Syndromes and Control Subjects
Study ID: NCT02809222
Brief Summary: Myelodysplastic syndromes (MDS) is a group of heterogeneous diseases characterised by the clonal evolution of dysplastic hematopoietic stem cells. This evolution is associated with accumulation of cytogenetic mutations which leads to acute myeloid leukaemia (AML). Evolution of MDS is also associated with increase of reactive oxygen species (ROS). The increase of ROS is associated with accumulation of cytogenetic mutations. Ascorbic acid (AA) is an actor of the regulation of the oxidative metabolism in the human body. Studies showed that supplementation with AA can change the proliferation status of MDS cells. Adjuvant treatment with AA is associated with a beneficial effect on the evolution of MDS and AML. The present study aim at describing the variations of plasmatic ascorbic acid concentrations between healthy volunteers and patients with myelodysplastic syndromes advanced in their treatment or recently diagnosed during a follow-up of 12 months.
Detailed Description: Myelodysplastic syndromes (MDS) is a group of heterogeneous life threatening diseases characterised by the clonal evolution of dysplastic myeloid hematopoietic stem cells. This evolution is initially associated with an excess of apoptosis followed by an excess of proliferation then, after accumulation of cytogenetic mutations, a transformation in acute myeloid leukaemia (AML) can appear. Evolution of MDS is also associated with increase of reactive oxygen species (ROS) . In MDS mice, perturbations of the metabolism of ROS is associated with increases in the number of cytogenetic mutations. Ascorbic acid (AA) is an actor of the regulation of the oxidative metabolism in the human body. In vitro studies showed that supplementation with AA can change the proliferation status of MDS cells . Guinea pigs with a phenotype with excess of ROS supplemented with AA have less somatic mutations and less MDS. Adjuvant treatment with AA is associated with a beneficial effect on the evolution of MDS and AML. To our knowledge no study have demonstrated the variations of the parameters of the oxidative metabolism during the evolution of MDS. The present study aim at describing the variations of plasmatic ascorbic acid concentrations between healthy volunteers and patients diagnosed with MDS in treatment or recently diagnosed during a follow-up of 12 months. During the follow-up a collection of plasma from volunteers and patients will be created for later analysis.
Minimum Age: 60 Years
Eligible Ages: ADULT, OLDER_ADULT
Sex: ALL
Healthy Volunteers: Yes
Clinical Research Center, University Hospital, Tours, Tours, , France
Department of Haematology and Cell Therapy, University Hospital, Tours, Tours, , France
Name: Emmanuel GYAN, MD,PhD
Affiliation: University Hospital, Tours
Role: PRINCIPAL_INVESTIGATOR