⭐️⭐️⭐️⭐️⭐️ "A total no brainer"

⭐️⭐️⭐️⭐️⭐️ "Love this, so easy."

Spots is the easy way to track your skin, mole and cancer changes.

Spots Global Cancer Trial Database for The Role of Muscle Cachexia in Pancreatic Cancer

The following info and data is provided "as is" to help patients around the globe.
We do not endorse or review these studies in any way.

Trial Identification

Brief Title: The Role of Muscle Cachexia in Pancreatic Cancer

Official Title: The Role of Muscle Cachexia in Pancreatic Cancer

Study ID: NCT02515513

Conditions

Pancreas Cancer

Study Description

Brief Summary: The relationship between myopenia, nutritional status, and long-term oncologic outcomes remains poorly characterized in patients with anatomically resectable pancreatic cancer (PC). The investigators want to look at muscle properties in pancreatic cancer patients to determine possible therapeutic options toward better nutritional status. Patients with benign right upper quadrant pathology will be utilized as controls for the study. The researchers hypothesize that improving cancer cachexia in PC will improve the quality of life and ultimately increase overall survival. The long term goal of is to identify areas of intervention to prevent and/or improve cachectic events in PC in order to significantly improve clinical outcomes. The first step in this long term goal is to fully characterize cachexia in the condition of PC. This research is to understand and modify the local response within skeletal muscle leading to a clinically relevant persistent wasting and to understand and interrupt the systemic stimulus produced by the tumor local environment resulting in these muscle specific mechanisms.

Detailed Description: Cancer cachexia (CC) is a devastating condition affecting up to 80% of cancer patients, diminishing quality of life and contributing to increased mortality. Cancer cachexia is a complex metabolic syndrome characterized by the loss of skeletal muscle mass and weakness. The muscle pathology of cancer cachexia is not only related to muscle atrophy but also to disruptions to the contractile apparatus of the muscle. While physiologic disruptions in muscle sarcomere and myofiber membrane integrity have been observed despite the lack of injury, the totality of the muscle specific mechanisms contributing to these phenotypes have not been described, nor investigated in the context of pancreatic cancer (PC) where cachexia is a significant clinical problem. Therefore, delineating specific mechanisms of muscle catabolism in PC is critical to developing clinical therapies to control wasting and improve patient quality of life, clinical outcomes and long-term survival. A variety of tumor promoting and inflammatory cell signaling pathways have been implicated in cancer cachexia, whereby pro-inflammatory cytokines have been implicated as a driving force. Remarkably, approximately half of all patients with PC demonstrate a measurable acute phase response, which is associated with poor clinical outcomes. Importantly, systemic elevations of these inflammatory mediators are due to a complex local interplay between the developing tumor and the immune system which subsequently leads to a systemic chronic inflammatory state. PC appears to manipulate the immune system to promote its survival at the expense of nutritional stores which results in cachexia. Therefore, understanding of the local and systemic inflammatory response in PC and its relation to muscle specific mechanisms is crucial to developing effective therapies for cancer cachexia. PC associated cachexia results in a significant therapeutic dilemma. Local approaches such as surgery for curative intent encounter a high recurrence rate which is indicative of the systemic nature of even very early-stage disease. Therefore, systemic therapies are necessary for long-term survival. Unfortunately, effective chemotherapies are only offered to patients with good clinical parameters such as nutritional status. In other words, if the patient is too weak, they are not offered effective therapies for the risk of causing more harm than good.

Eligibility

Minimum Age: 18 Years

Eligible Ages: ADULT, OLDER_ADULT

Sex: ALL

Healthy Volunteers: No

Locations

UF Health, Gainesville, Florida, United States

Contact Details

Name: Andrew Judge, PhD

Affiliation: University of Florida

Role: PRINCIPAL_INVESTIGATOR

Useful links and downloads for this trial

Clinicaltrials.gov

Google Search Results

Logo

Take Control of Your Skin and Body Changes Today.

Try out Spots for free, set up only takes 2 mins.

spots app storespots app store

Join others from around the world: