⭐️⭐️⭐️⭐️⭐️ "A total no brainer"

⭐️⭐️⭐️⭐️⭐️ "Love this, so easy."

Spots is the easy way to track your skin, mole and cancer changes.

Spots Global Cancer Trial Database for Immunotherapy and SBRT Study in Borderline Resectable Pancreatic Cancer

The following info and data is provided "as is" to help patients around the globe.
We do not endorse or review these studies in any way.

Trial Identification

Brief Title: Immunotherapy and SBRT Study in Borderline Resectable Pancreatic Cancer

Official Title: An Exploratory Phase 2 Study of Neoadjuvant Chemotherapy Followed by Stereotactic Body Radiation Therapy (SBRT) With Algenpantucel-L (HyperAcute®-Pancreas) Immunotherapy in Subjects With Borderline Resectable Pancreatic Cancer

Study ID: NCT02405585

Study Description

Brief Summary: Unfortunately, despite the best clinical efforts and breakthroughs in biotechnology, most patients diagnosed with pancreatic cancer continue to die from the rapid progression of their disease. One primary reason for this is that the disease is typically without symptoms until significant local and/or distant spread has occurred and is often beyond the chance for cure at the time of the diagnosis. The lack of any treatment to substantially increase long term survival rates is reflected by the poor outcomes associated with this disease, specifically time to disease progression and overall survival. However, another important part of the body is now being looked at as a target for therapy against this disease - the immune system. Scientists have clearly shown that pancreatic tumor cells produce a number of defective proteins, or express normal proteins in highly uncharacteristic ways, as part of this cancer. In some cancers, these abnormalities can cause an immune response to the cancer cells much in the way one responds to infected tissue. In progressive cancers however, the immune system fails to effectively identify or respond to these abnormalities and the cancer cells are not attacked or destroyed for reasons not yet fully understood. This clinical trial proposes a new way to stimulate the immune system to recognize pancreatic cancer cells and to stimulate an immune response that destroys or blocks the growth of the cancer. This new method of treatment helps the immune system of pancreatic cancer patients to "identify" the cancerous tissue so that it can be eliminated from the body. As an example, patients with certain diseases may require an organ transplant to replace a damaged kidney or heart. After receiving their transplant, these patients receive special drugs because they are at great danger of having an immune response that destroys or "rejects" the transplanted organ. This "rejection" occurs when their immune system responds to differences between the cells of the transplanted organ and their own immune system by attacking the foreign tissue in the same way as it would attack infected tissue. When the differences between foreign tissues and the patient's body are even larger, as with the differences between organs from different species, the rejection is very rapid, highly destructive, and the immunity it generates is longlasting. This is called hyperacute rejection and the medicine used to immunize patients in this protocol tries to harness this response to teach a patient's immune system to fight their pancreatic cancer just as the body would learn to reject a transplanted organ from an animal. To do this, Algenpantucel-L immunotherapy contains human pancreatic cancer cells that contain a mouse gene that marks the cancer cells as foreign to patient's immune systems. The immune system therefore attacks these cancer cells just as they would attack any truly foreign tissue, destroying as much as it can. Additionally, the immune system is stimulated to identify differences (aside from the mouse gene) between these cancer cells and normal human tissue as foreign. This "education" of the immune system helps treat the patient because pancreatic cancer cells already present in a treated patient are believed to show some of the same differences from normal tissue as the modified pancreatic cancer cells in the product. Due to these similarities, the immune system, once "educated" by the Algenpantucel-L immunotherapy, identifies the patient's cancer as foreign and attacks. Historically, external beam radiation has been part of the treatment of pancreatic cancer, both before and after surgical resection. Recent breakthroughs in technology now allow for more intensive doses of radiation to be delivered to the body with greater precision. These newer, more precise radiation treatments, called stereotactic body radiation, deliver more intensive radiation to a locally advanced tumor and are now being employed in the treatment of pancreatic cancer. Stereotactic body radiation may increase the chances that surgery will successfully remove a pancreatic cancer. In this experimental study, all patients will be given a strong combination of antitumor chemotherapy while receiving injections of an immunotherapy drug consisting of two types of pancreatic cancer cells that have been modified to make them more easily recognized and attacked by the immune system. The investigators propose to test this new treatment paradigm along with stereotactic body radiation in patients with borderline resectable pancreatic cancer to demonstrate that treatment with this combination of therapies increases the time until the tumor progresses as well as overall survival.

Detailed Description: This protocol attempts to treat pancreatic cancer using a naturally occurring barrier to xenotransplantation in humans to increase the efficacy of immunizing subjects against their pancreatic cancer. In this protocol, the transfer of the murine alpha(1,3)galactosyltransferase \[alpha(1,3)GT\] gene to immunotherapy component cells results in the cell surface expression of alpha(1,3)galactosyl-epitopes (alpha gal) epitopes on membrane glycoproteins and glycolipids. These epitopes are the major target of the hyperacute rejection response. This response occurs when organs are transplanted from lower animal donor species into primates and results in rapid destruction of transplanted tissue and an augmented response against transplant antigens, including antigens not related to the alpha gal epitopes. Human hosts have pre-existing anti-alpha-gal antibodies that are thought to result from chronic immunological stimulation due to exposure to alpha-gal epitopes that are naturally expressed on normal gut flora and these antibodies may comprise up to 1% of serum IgG. Opsonization and lysis of the immunotherapy component cells mediated by this antibody is believed to increase the efficiency of antigen processing by targeting vaccine components to antigen presenting cells via the Fc gamma receptor.

Eligibility

Minimum Age: 18 Years

Eligible Ages: ADULT, OLDER_ADULT

Sex: ALL

Healthy Volunteers: No

Locations

University of Louisville, Louisville, Kentucky, United States

Lahey Clinic, Burlington, Massachusetts, United States

New Mexico Cancer Care Alliance, Albuquerque, New Mexico, United States

Seattle Cancer Care Alliance, Seattle, Washington, United States

Contact Details

Useful links and downloads for this trial

Clinicaltrials.gov

Google Search Results

Logo

Take Control of Your Skin and Body Changes Today.

Try out Spots for free, set up only takes 2 mins.

spots app storespots app store

Join others from around the world: