The following info and data is provided "as is" to help patients around the globe.
We do not endorse or review these studies in any way.
Brief Title: AI Assisted Detection of Chest X-Rays
Official Title: Utility of an AI-based CXR Interpretation Tool in Assisting Diagnostic Accuracy, Speed, and Confidence of Healthcare Professionals: a Study Using 500 Retrospectively Collected Inpatient and Emergency Department CXRs From Two UK Hospital Trusts
Study ID: NCT06075836
Brief Summary: This study has been added as a sub study to the Simulation Training for Emergency Department Imaging 2 study (ClinicalTrials.gov ID NCT05427838). The Lunit INSIGHT CXR is a validation study that aims to assess the utility of an Artificial Intelligence-based (AI) chest X-ray (CXR) interpretation tool in assisting the diagnostic accuracy, speed, and confidence of a varied group of healthcare professionals. The study will be conducted using 500 retrospectively collected inpatient and emergency department CXRs from two United Kingdom (UK) hospital trusts. Two fellowship trained thoracic radiologists will independently review all studies to establish the ground truth reference standard. The Lunit INSIGHT CXR tool will be used to analyze each CXR, and its performance will be measured against the expert readers. The study will evaluate the utility of the algorithm in improving reader accuracy and confidence as measured by sensitivity, specificity, positive predictive value, and negative predictive value. The study will measure the performance of the algorithm against ten abnormal findings, including pulmonary nodules/mass, consolidation, pneumothorax, atelectasis, calcification, cardiomegaly, fibrosis, mediastinal widening, pleural effusion, and pneumoperitoneum. The study will involve readers from various clinical professional groups with and without the assistance of Lunit INSIGHT CXR. The study will provide evidence on the impact of AI algorithms in assisting healthcare professionals such as emergency medicine and general medicine physicians who regularly review images in their daily practice.
Detailed Description:
Minimum Age:
Eligible Ages: CHILD, ADULT, OLDER_ADULT
Sex: ALL
Healthy Volunteers: Yes
Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, United Kingdom