⭐️⭐️⭐️⭐️⭐️ "A total no brainer"

⭐️⭐️⭐️⭐️⭐️ "Love this, so easy."

Spots is the easy way to track your skin, mole and cancer changes.

Spots Global Cancer Trial Database for Multimodal Imaging-assisted Diagnosis Model for Cervical Spine Tumors

The following info and data is provided "as is" to help patients around the globe.
We do not endorse or review these studies in any way.

Trial Identification

Brief Title: Multimodal Imaging-assisted Diagnosis Model for Cervical Spine Tumors

Official Title: Based on a Small Sample Deep Learning Multi-modal Image-assisted Diagnosis Model of Cervical Spine Tumors Clinical Application Research

Study ID: NCT04959656

Conditions

Spine Tumor

Interventions

Study Description

Brief Summary: Cervical spine tumor is a small sample of tumor disease with low incidence, great harm, and complex anatomical structure. It is very difficult to identify and classify benign and malignant cervical spine tumors clinically. The deep learning model we constructed in the early stage has a higher accuracy rate for the image diagnosis of cervical spondylosis with a large number of cases, and a better clinical application effect, but the accuracy rate for cervical spine tumors with a small number of cases is lower. The reason may be the amount of data. With limited tasks, the traditional deep learning model is difficult to play an effective role. Based on this, we propose to build a small sample-oriented deep learning model to assist clinicians in the diagnosis of cervical spine tumors with multimodal images, and to evaluate the benign and malignant tumors.

Detailed Description: Cervical spine tumor is a small-sample tumor disease with low incidence, great harm, and complex anatomical structure. It is very difficult to identify and classify benign and malignant cervical spine tumors clinically. The deep learning model we constructed in the early stage is suitable for the large number of cases. The imaging diagnosis of cervical spondylosis has a high accuracy rate and a good clinical application effect, but the accuracy rate is low for cervical spine tumors with a small number of cases. The reason may be that for tasks with limited amount of data, the traditional deep learning model is difficult to play an effective role. Based on this, we propose to construct a small sample-oriented deep learning model to assist clinicians in the diagnosis of cervical spine tumors in multi-modal imaging, and to evaluate the benign and malignant tumors. This research will not only improve the efficiency and efficiency of cervical spine tumor imaging diagnosis. Accuracy, to guide clinical personalized treatment, will also provide a basis for the clinical application of deep learning in the field of small samples, which has important clinical significance.

Keywords

Eligibility

Minimum Age: 18 Years

Eligible Ages: ADULT

Sex: ALL

Healthy Volunteers: No

Locations

Peking University Third Hospital, Beijing, , China

Contact Details

Name: hanqiang ouyang

Affiliation: Peking University Third Hospital

Role: STUDY_CHAIR

Useful links and downloads for this trial

Clinicaltrials.gov

Google Search Results

Logo

Take Control of Your Skin and Body Changes Today.

Try out Spots for free, set up only takes 2 mins.

spots app storespots app store

Join others from around the world: